
RD-RI39 939 ON THE SEQUENTIAL NATURE OF UNIFICATION(U) /
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER
SCIENCE C DMORK ET AL. MAR 84 MIT/LCS/TM-257

UNCLSSIFEN981483-K-04 -- 8 F/012/ NL

EamhohmhhmohEEE

L3-2

.L2.2

1.25 111.4 1~k.6

MICROCOPY RESOLUTION TEST CHART
EATIjONAL *JUiAU 07 STAWAM2 - #@6-A

al ' . • --.. • .• . . •
A. pm " % % •. % , • ''-. A. " . *. , . - - o , o "

%..

,,,-,-

~~i .1 :%1*~q

" LABORATORY FOR ISIUEO

LABOATOR FORMASSACHUSETTSINSTITUTE OF

o COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-257

4..

ON THE SEQUENTIAL NATURE OF UNIFICATION

Cynthia Dwork

-l Paris C. Kanlak

John C. Mitchell

DTIC
March 1984 APR 1 0 1984

E

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

84 04 01 P.
-J

-- --:
* -

' ,- ,.,- ', ".-." " _. .".." .° 2 ' -. . - * -..b
.

". . Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (lWhon Dar Entored) _

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
SRPRDCM TTBEFORE COMPLETING FORM

I. REPORT NUMUER12. GOVT ACCESO NSREIPIENT'S CATALOG NUMBER

MIT/LCS/TM-257 AD g
4. TITLE (mid Subtitle) 9. TYPE OF REPORT & PERIOD COVERED

"On the Sequential Nature of Unification" Interim Research

S. PERFORMING ORG. REPORT NUMBER
._ __..__,_ MIT/LCS/TM- 257
7. AUTHORS) S. CONTRACT oR GRANT NUMER.)

DOD/D)IRPA
Cynthia Dwork, Paris C. Kanellakis, and N00014-83-K-0146

John C. Mitchell NSF MCS-8210830
PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UN IT NiUMBERS

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
'U DARPA/Dept. of Defense March 1984

1400 Wilson Boulevard 13. NUMBER OF PAGES

- Arlington, VA 22217 120
'4. MONITORING AGENCY NAME & ADDRESS(I differmt Imem Contrelilht Office) IS. SECURITY CLASS. (of Cia report)

ONR/Dept. of the Navy
Information Systems Program ISa. OECL ASSIFICATION/DOWNGRADING
Arlington, VA 22217 SCHEDULE

IS. DISTRIBUTION STATEMENT (of #his Report)

Approved for Public Release, distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 0, It Affermt hm Report)

Unlimited

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side if nec eary and Identiy by block number)

unification, completeness, parallelism

20. ABSTRACT (Continue on reverse side It necesary and Identify by block nafber)

The problem of unification of terms is log-4pace complete for
P. In deriving this lower bound no use is made of the potentially
concise representation of terms by directed acyclic graphs. In
addition, the problem remains complete even if infinite substi-
tutions are allowed. A consequence of this result is that
parallelism cannot significantly improve on the best sequential
solutions for unification. Thb "dual" problem of computing the

DD I FO 1473 EDITION OF I NOV SI IS OSOLETE Unclassified
. SECURITY CLASSIFICATION OF THIS PAGE (When Dote treed)

-. .,

"UNUV 6.AICAYT" Of Tun PAGWM Oaf. awMe

20. continued

congruence closure of an equivalence relation is also log-space
complete for P. However, we show that for the problem of term
matching, an important subcase of unificatio8 there is a good
parallel algorithm using O(log2 n) time and n processors on a
PRAM. For the O(log n) parallel time upper bound we assume that
the terms are represented by directed acyclic graphs; if the
longer string representation is used we obtain an O(loq N)
parallel time bound.

Accession For

N-TIS GRA&I
DTIC TAB
Unannounced
Justificatio

Distribution/ ISECTC0

Availability Codes

Aail and/or

Dist Special

144

UnclassifiedCOD

M¢ YGAiIIAINT Pl[lm a Pd

On the Sequential Nature or Unification

Cynthia l)work I Paris C. Kancilakis2 John C. Mitchell 3.
AIT Rrown Univ. AliT

November 1983

Abstract

The problem of unification of terms is log-spacc complete for P. In deriving this lower bound no
use is made of the potentially concise representation of terms by directed acyclic graphs. In

addition, the problem remains complete even if infinite substitutions arc allowed. A consequence of
this result is that parallelism cannot significantly improve on the best sequential solutions for
unification. The duar"probcm of computing the congruence closure of an equivalence relation is

*, .
3i,.

also log-space complete for P. However. we-show that for the problem of term matching, an
important subase of unification, there is a good parallel algorithm using O(log2 ntime and nOQ)
processors on a PRAM. For the O(log 2 n) parallel time upper bound w-asswnethat the terms are
represented by directed acyclic graphs; if the longer string representation is usedw lnali an

* O(log n) parallel time bound I's

1. Introductioin

Unification is an important step in resolution theorem proving [R] with applications to a variety

of symbolic computation problems. In particular, unification is used in PROLOG interpreters [CM].
,, ~ type inference algorithms [MI, and term rewriting systems [GKM]. Many symbol manipulation

problems are inherently difficult and thus do not have efficient solutions. Theorem provers and

PROLOG interpreters do not always give us the answers we want fast enough. One way to combat
the difficulty of these problems is by coordinating many processors to solve a single problem

instance by working on several subproblems in parallel Although there are a number of ways to
introduce parallelism into interpreters [S] and theorem provers, unification is a prime target since it
is the most commonly repeated operation in these tasks. However, our analysis suggests that parallel

unification algorithms will not perform significantly faster than the best sequential algorithms known
.4 (e.g.. [PW] runs in linear time). We show that, unless PKNC, an unlikely twist of complexity theory

[C], no parallel algorithm for unification will run in time bounded by a polynomial in the logarithm
of the input size, and using a number of processors bounded by a polynomial in the size of the
input. We use the PRAM of [FW1 as our model of parallel computation, although we could, just as

well, have used any other "reasonable parallel model" [J].

'uppted by a anreil Fellowship. 2Suoed pmrly by NSF grat MCS-I210830 and partly by ONR-DARPA rant

l... N00014-$3-K-0146. 3Supponed by an IBM Fellowship.

-. ,....._.. , -. , - '. ,' -,. ", ..-. , .-. ,-.,-. •.,..: . .

TTC.I ,,-7 V- -11%7--%": - 7-i--,.

2

Informally. two symbolic terms s and t arc unifiable if there is sonic way of sub ituting

additional terms for variables in s and t so that both become the snmie tenn. All occurcnccs of a

variable x in both s and t must be replaced by the same term. For example, the terms f(x. x) and

fIg(y). g(g(z))) may be unified by substituting g(z) for y and g(g(z)) for x. A unification problem like
"unify fAt 1, t2) and ft3. t4)" may be decomposed into two subproblems "unify tj and t3" and
"unify t2 and t4". However, these two problems cannot be solved entirely separately in parallel. If

some variable x occurs in both tj and t4. for example. then the solutions to the subproblems must

be coordinated so that both substitute the same term for x.

There are several variations of the unification problem. For example, a type inference algorithm

may construct labeled graphs which represent terms that must be unified. An acceptable result of

unification, in this case, may be a labeled graph with a cycle. Labeled graphs with cycles represent

types defined by recursion iMPS], or, if interpreted as terms, represent "infinite terms". Thus one

natural, unrestricted version of unification is to allow "infinite terms" to be substituted for variables.

Using the "infinite term" f(f(f...)), we can unify x and f(x). something we could not do otherwise.

Unrestricted unification also appears in many PROLOG interpreters; those omitting the occur test

[CM]. Another variation on unification is the special case in which the labeled graphs are from a

class of tree-like directed acyclic graphs (which we call simple dags). The complexity of unification

on simple dags is precisely the complexity of unification on symbolic (string) representations of

*! ,tenns as opposed to the complexity as a function of the size of more concise graph representations.

For this case it was known that unification, without "infinite terms", is co-NLOGSPACE-hard [LS].

This did not exclude the possibility of parallel algorithms, moreover no lower bound was known for

unrestricted unification.

We show that all of the above variants of unification are log-space complete for P [C, G1, 021,
and hence unlikely to have nice parallel solutions. The nondeterministic log-space test for

ununifiability in [LSJ] which could have led to a O(log 2 n) parallel time solution, is sufficient, but
unfortunately not necessary (see Figure 3b for a counterexample to this test). In addition, we show
that the related problem of congruence closure [DSTJ is complete for P.

One important special case of unification can be solved quickly in parallel. This problem called

term matching, arises in term rewriting. A term s matches a term t if t is a substitution instance of s.
, The rewrite rule /-r may be used to rewrite a term t whenever I matches t [GKM]. We show that

matching can be accomplished in log2-time on a PRAM, using a polynomial number of processors.

Our algorithm combines parallel transitive closure of a directed acyclic graph, with parallel

computation of connected components of an undirected graph [HCS, Ch]. Also, matching is in

NLOGSPACE, and for simple dags it is in DLOGSPACE

Following the definitions presented in Section 2. we will discuss labeled graph unification in

Section 3' unification for simple dags and congruence closure in Section 4. and term matching in

Section 5.

a.

A3

2. IDefinitila

LI lermis and)ap

I.ct I' be an infinite set of variables xyJxl.... and 1' an infikgc set of functio, symblds
f g.h.f1.... We assume that I and I' arc disjoint. E-ach function symbol f has a fixed arit. a
nonncgative integer a(f. A fhinction symbol gEl," with a(g)=O is called a constant. The et T of
lenns is defined inductively by:

a variable x(V or constant gEF is a term, and

if f(F and t1. taqo are terms, then AI tad is a term.

Terms may be represented using directed acyclic graphs with labeled nodes and, possibly.
multiple labelled arcs. A labeled 4directed graph is a finite directed graph G. such that:

(I) every node v of G has a unique label, denoted label(v), with label(v)E U F.

(2) for each xEV. there is at most one node v with label(v)=x. and it has outdcgree 0,

(3) if a node v has label fEF. with arity a(f)>0. then it has outdegree a(f). and
the arcs leaving it are labeled 1..,a(f).

If there is an arc labeled i from node u to node v, then we say that v is the i-th son of u.

A labeled dag G is a labeled directed acyclic graph. The leaves of G are the nodes of outdegree 0;
note that a node v is a leaf iff label(v) is either a variable or a constant. The height of a node v of a
dag G is the length of the longest path from v to a leaf. A root of a dag is a node of indegree 0.

If G is a labeled dag. we can associate a term tv with any node v of G. We say that
v represents tv. The term tv is defined by induction on the height of v:

if v is a leaf, then tv=label(v),

if v has sons vl,...,vk . and label(v)=f, then tv=(tvl....tVk).

The definition of labeled dags above ensures that tv is always a well-formed term. If G is a
labeled directed graph, then we can associate an infinite term tv with each node v of G by a similar
definition. Since we only consider finite graphs, all terms represented by nodes of a labeled graph 0
are finite iff G is acyclic. If G is a labeled dag with only one root r, then we say that 0 represents
the term tr

The representation of terms by labeled dags is illustrated in Figure 1. The terms g(x) and x are
represented by the two nodes of the labeled dag in Figure la. Both roots in Figures 1b, 1c represent

f(flx, x). Aix, x)). The terms h(x, x, y, z) and h(g(y), g(g(z)), g(g(gl)), g(82)) are represented by the
roots of Figure Id. In Figure 1, we assume that a(f=2, a(h)=4, a(g)=l, and a(gl)=a(g 2)=O.

Although each node of a labeled dag determines a single term, the converse is not true. A term

t can be represented by several different dags. In particular, if t is a term with several occurrences
of a subterm t1. then we may use a separate subdag for each occurrence of tj in t, or use one
subdag for all occurrences; cf. Figures lb and Ic. Since a repeated subterm need be represented

•'

4

only once. it is iw'sible to repre-sent sonic %er% long tcnnti with rcla tiscl m l Ijw'led dtg%.. I:or
example. the dag in I:igure ie with n notdes rcprewnits a ter!n with 0(211) symls. Wc define a
class of labeled dags which are no more concise that terms.

A simple dag is a labeled dag G such that the only nodes of o with indegrcc greater than I arc
leaves. 'lis every node of a simple dag that is not a leaf or a root must have indcgrcc I. Given a

term t (in the form of a string of symbols), we can construct a simple dag representing t in linear
time. using only logarithmic space. Similarly. given a simple dag G with a single root, we can write
out the term represented by G in linear time and logarithmic space. Moreover, the site of a simple
dag. measured in number of nodes and arcs, is within a consant multiplicative factor of the length
of the term it represents.

2.2 Unification and Termn Matching

Unification and term matching arc both problems that are solved by computing substitutions. A
substilulion a is a mapping from variables to terms such that a(x)= x for all but finitely many xE V
The action of a substitution u on a term . written a(t). is the result of replacing each variable x in t
by a(x). Thus q(f(t1... tk))=fto(ti),.... Ok)). In particular, any substitution a maps every function
symbol to itself. We use = to denote syntactic equality of strngs.

*Two terms s and t are unifiable if there exists a substitution a such that af(s)= a(t). A term s
matches term t if there exists a substitution a with u(s)=

In some instances we may wish to allow substitutions to map variables to infinite terms. If we
allow these more general substitutions, then we have the unrestricted unification and unrestricted
matching problems. Unrestricted unification differs from unification (e.g.. in Figure la x and g(x)
are ununiflable but unrestricted unifiable with u(x)=g(g(...)) an infinite term). Unrestricted
matching and matching are the same; note that we only consider substitutions that involve infinite
terms, not unification of infinite terms s and t.

If o(s)=o(t), then a is called a unifier for s and L A substitution a is more general than a
substitution i if there exists a substitution p with -r=pea. In 1R it is shown that whenever terms s
and t are unifiable, there is a unifier a for s and t, which is more general than any other unifier.

This is called the most general unifier (mgu) for s and L The mgu is unique up to renaming of
variables. For example, consider the terms s= fx, y) and t= fg(y), g(z)) represented in Figure If.
These terms are unifiable, with mgu v(x)=g(g(z)), a(y)=g(z), and i(z)=z; then
a(s)=i(t= gz (z)).

Two terms s and t are unifiable if a certain kind of relation, can be constructed on the nodes of
a labeled dag representing s and L If u and v are two nodes of a labeled dag and if ui is the i-th
son of u P.! vi the i-th son of v, for some i. then ui,vi are corresponding sons of u,v.
A relation R on the nodes of a labeled dag is a correspondence relation if. for all u,v,ui,vi:

uRv -, uiRvi whenever ui.vi are corresponding sons of uv.

,, ,: ,* - ** ;:. * .: iV ?.f % . * ; *-c .*%$ -;f;- s ".

5

A correspondencc relation that is also an equivalcncc rclation will be called a t-e rclii,,.
A relation R is hon iiw icous if* label(u) and label(\) are not difkrent symbols %henc er ukv.
An equivalence relation R on nodes of a labeled directed graph G is acyclic if the R-eqtiivalence
classes are partially ordered by the arcs of G. In [PW]. acyclic, homogeneous c-c relations arc called
valid equivalence relations. "ibese relations charactcrizc unifiability.

Proposition 1: [PW] Let u and v be nodes in a labeled dag G. 'hen tu and tv are unrestricted
unifiable iff there is a homogeneous c-e relation R, with uRv. Similarly. tu and tv are unifiable iff
there is an acyclic, homogeneous c-c relation R, with uRv. D

If R is an acyclic, homogeneous c-c relation on a labeled dag G, then the reduced graph formed

by treating each equivalence class as a single node is again a labeled dag. If u and v are the only
two roots of G, and uRv, then this reduced graph with a single root represents a term s that is a
substitution instance of both tu and tv. If R is the minimal c-e relation with uRv, then
s=V(tu)=v(tv), where a is the mgu of tu and tv [PWJ. We can extract a from R by taking q(x) to
be the term in the reduced graph that is represented by the node formed from the equivalence class
of x. We can therefore consider the reduced labeled dag as a reasonable representation of a unifier
for two terms. This representation of a unifier has the virtue of being compact; it is clear that the
reduced graph is no larger than the original dag. However, if we were to write.out each unifier
explicitly, we might end up writing out terms that were much longer than the terms represented by
the input dag. An example in [PWi shows that the length of the substitution may be an exponential
function of the length of the input terms.

As in [PW], we will represent equivalence relations on the nodes of labeled dags by adding
undirected edges to the labeled dag data-structure.

Matching may be viewed as a special case of unification. Let ac be a substitution such that for
each distinct variable x. in the terms we are examining, uc(x) is cx, a distinct constant symbol not
appearing in these terms. It is easy to see that a term s matches a term t iff s and c(t) are
unifiable. Another, degenerate case of unification is to determine whether two terms are syntactically
identical. Of course, this is a trivial operation on strings, but it is not quite so trivial an operation
when terms are represented by labeled dags. Clearly, s and t are syntactically equal iff ac(s) and
oc(t) are unifiable.

In summary, using the labeled dag data stncture, we have the following problems:

UNIFY(G.u,v)

Input: A labeled dag (with distinguished nodes u and v.
Output: Are tu and tv unifiable?

If yes. then produce a labeled dag representing the mgu.

".4
:,,:.-.-..-:.:C.?.-.:.:-..?:.. ..

6

MA'rCIi(G,u,v): 'libis is UNIFY(G,u.v) with ac(tv) instead of tv.

EQUAL(G.u.v)): This is UNIFY(G.u.v) with vc(tu), uc(tv) instead of tu.

Of course, there is also unrestricted unification UNIFYOo(Gu,v). We have a special case of

each of the above problems when G is a simple dag.

2.3 Parallelism, NC and P

For sequential computation we use the standard definitions for time, space, space-bounded

reductions and complexity classes such as P, DLOGSPACE, NLOGSPACE, T(n)-DSPACE, on a
Random Access Machine (RAM) [C]. We denote log-space reducibility by <log. As usual, P is the

class of languages recognizable in deterministic polynomial time. The problems UNIFY, MATCH
and EQUAL all belong to P [PW, MM]. Some may be solved in Iog()n space, while others, those
log-space complete for P, most probably cannot.

For parallel computation we use the Parallel RAM (PRAM) of [W] as our model, with parallel
time and number of processors as the critical resources. We make use of the parallel computation
theis, relating parallel time and sequential space, and its proof for PRAM's [FW]:

Uk2 0 lgk(n)-parallel time-PRAM = Uk O logk(n)-DSPACE.

We take NC to be the class of problems solvable on a PRAM using log0(1)n parallel time, and
nO 1) processors. We try to determine whether a problem in P is "parallelizable" (i.e., in NC) or

"most probably not parallelizable" (i.e., log-space complete for P); [C, J] review related results.

One problem that is log-space complete for P is the circuit value problem for monotone circuits.
A monote circuit P is a sequence (80,-.,"n), where each Pi is either an input, an and-gate AND(j,k),

or an or-gate ORj,k); where for indices j,k we have i~j>k, and the 0,1 values of the inputs are given
explicitly. In addition, monote circuits are assumed to have the following properties:

(1) if 8i is an input then the index i appears at most once in P. (fan-out -51 for inputs),
(2) if Pi is a gate, then the index i appears at most twice in P, (fan-out - 2 for gates),

(3) #n is an or-gate with one outpuL

The monotone circuit value problem is.

MCV= LJB P is a monotone circuit with the output value of Pn =0).

From "3:, G2] we have:

Proposition 2: MCV is log-space complete for P. 1

* * ,p 2 .'.' .'.'''"' • 'N. .'.g " ""''' ..-. " " "" . ." "

7

. 'lhr (onipixit) of inification

Ihe general unification problem. encountered in theorem proving and elsewhere. is to find a

simultaneous unifier for a set of terms. Ilowever. the general case is log-spacc and linear time

reducible to the special cas of unifying a single pair.of terms [PWJ. On a PRAM this reduction can

be performed in O(log n) parallel time and with O(n) processors: it affects none of our results.

We first describe a naivc unification algorithm based on the criterion of Proposition 1. and on

the fact that the mgu is the minimal c-c relation JPWJ. lhe input to the algorithm is a laheled dag

G with two distinguished nodes u and v. We wish to solve UNIFY(Gu.v). A relation 0 is

constructed and maintained as undirected edges in G. The relation 0 is by its representation

symmetric and reflexive. In order to make 0 a c-e relation, both "correspondence" and
."equivalence" must be satisfied. Setting sons equivalent, when their fathers are equivalent. is known

as propagation. For 0 to be an equivalence relation we must also enforce transiti'it). Having

created the minimal c-e relation (for hich u0v. we then test for homogeneity. In the

affirmative case a new labeled graph G' can be consmcted by coalescing classes of nodes in G.

Now we know that the input is at least unrestricted unifiable. If G' is acyclic it is unifiable.

proc naive-unification(G.uv)

set uev;
while (0 is not a c-e relation) do

propagation: while (u~v have corresponding sons uiv i not related by 0) do set ui0vi oil

transitivity: while (uQv and vDw. but uw are not related by G) do set u0w od

od ;
if 0 not homogeneous then print UNUNIFIABLE

else (coalesce equivalence classes to produce labeled graph G'}

if G' has a cycle

then print UNUNIFIABLE BUT UNRESTRICTED UNIFIABLE

else print UNIFIABLE
.fi

fii

proc {0' represents mgu)

In this algorithm all individual steps can be performed on a PRAM using loSO(1)n time and

nO () processors. 'he difficulty arises in the outer loop, the body of which is executed if 0 is

either not a correspondence, or not an equivalence relation, i.e., if either condition inside an inner

loop is satisfied. The problem is that on an input of size n the body of the main loop might be

executed 0(n) times. This behavior is illustrated in Figure 2. The example can easily be generalized

to force the 0(n) alternation between propagation and transitivity for any n.

"Therem !: UNIFY(G~u.) and tINIFYO(G.u.,) are log-space complete for P.

Proor: We show how to log-space reduce MCV to unifiahility (for menihcrship sec IfWI). More

specifically. if a is a monotone circuit {a .a-n}. we construct G(a). u(a). and %(a) such that

aCMCV ift UNIFY(G(a).u(a).v(a))= UNIFIABI-I.
This reduction directly applies to UNIFY °° and is easily seen to use only log space.

lhc monotone circuit a can be represented as a diagram with wires. AND and OR gates of

fan-in 2 and fan-out at most 2. a special OR output gate with one output Wirc. and ' ith each input

wire leading to one gate and having a 0 or a I value (see Figure 3a for an example). The input wire

values combine to produce values for all other wires and the output wire in particular. The circuit

has no feedback. i.e.. if the wires are viewed as arcs and the inputs and gates as nodes we get a dag

without multiple arcs.

(1) Introduce two nodes u(a). v(a) in G(a).
(2) If ai is an AND gate include Gand from Figure 4a in G(a). If ai is an OR gate include

Gor from Figure 4b in G(a). These dags have two pairs of input nodes and one pair of output

nodes each. i.e., (INP, IN2i}, {IN3i. IN4 i), and tOUTli, OUT2i}. Corresponding sons are
illustrated by the labels a, b on the am.

(3) If ai is an input include in G(a) a pair of nodes {OUTii. OUT2J. If the value of the input

is 1 then make OUTIi, OUT2i corresponding sons of u(a), v(a). If the value of the input is 0 then

make OUTIi. OUT2i sons of u(a) and let v(a) have two sons that correspond to them and are two

new leaves in G(a).

(4) If gate ai is connected to aj, ak (i.e., in the wire diagram) then identify nodes
INli = OUTj. IN2i = OUT2j, IN3i=OUTlk, IN4 i= OUT 2k. When these subdags are concatenated
nodes have outdegree S:2, and the labels on the arcs can be made 1 and 2, so that the equalities of
la ,s a, b in Figures 4a, 4b is preserved.

(5) In the dag constucted in steps 1-4 above assign labels to the nodes as follows:
label(u)= label(v)=h,
abel(node of outdegree 1)=,
label(node of outdegree 2)=f,
label(OUTln)=gl* 92=label(OUT2n) ,

label(leaf other than OUTln. OUT 2n)=distinct variable.

We can easily see now that every wire w in the wire diagram can be associated to a pair of
nodes OUTw, OUTw,. We require u(a)v(a). For such a minimal c-e relation 0, we claim that
the value of wire w in a is 1 iff OUTw® OUTw,. This certainly holds for the inputs, because of
the way we built corresponding sons of u and v. Also, it is trivial to check that Gand and Gor
simulate the behavior of AND and OR gates. Therefore the value of an is 1 iff OUTln9OUT2n.
The graph Ca) i. constructed in such a way that the only place homogeneity could be violated by
0 is if OUTInOOUT2n. As a result, if a=l, the terms represented by u(a) and v(a) are not
unrestricted unifiable, and if a=0 they are unifiable (the acyclicity condition is also true). 03

'.V.

0,
.. . . - r + . ". ," " " €" " . ;", , "- "r "." .". " .". .". ", .,.' .. ',,- ' " " .. '-. '

9

4. Simple I)ags and ('ongruencr (losure

In this Section we will make our lower hounds independent of the potentialy concise dag

representation of terms, by extending them to simple dags. Wc will also in~cstigale the relatcd

problem of computing the congrncnce closure of an equivalence relation.

Theorem 2: UNIFY(G~u.) and UNIFY°°(G.u.v) arc log-spacc complete for P. even when G is
a simple dag.

Proof: Given monotone circuit a we construct a simple dag G(a) with two roots u(a). and v(a)
so that, if an=O then the terms tu(a), tv(a) arc unifiable else they are not unrestricted unifiable.

This suffices for the completeness of both UNIFY and UNIFY ° . Note that the proof of
Theorem I no longer applies, because the Go, dags used in that reduction could introduce nodes
with indegree 2, i.e.. their output nodes, which were not leaves.

As in the proof of Theorem 1, we encode the input of a using a pair of nodes for each circuit
input. The input-subgraph of the graph of Theorem 1 is actually a simple dag, so we use the same
construction. However, we cannot attach "gates" directly to the input-subgraph since this will

produce a dag which is not simple. Instead, each gate will be constructed separately using a pair of
subgraphs. Any c-e relation (with u(a)®v(a) will relate the two parts of each gate. In addition,
the input nodes of one gate will be "connected" to input-subgraph nodes or output nodes of other
gates using a separate "patch board" subgraph. Recall that the gates of a are numbered so that if an
output of gate ai goes to an input of gate aj. then Kj.

For each gate of a, we use four input nodes and four output nodes. For gate ai, let us denote
these nodes by IN1 i_., IN4 and OUTIi...., OUT4i. As in the proof of Theorem 1, the nodes of
O(a) work in pairs. Inputs INli and IN2i represent the first input to ai and IN3 and IN4 the
second. Similarly, nodes OUTi and OUT2i represent the first output of ai and OUT3i and OUT4i

the second. We also use nodes ui, vi which are the i-th sons of roots u(a) and v(a), respectively,
and four or seven internal nodes which may remain anonymous.

If ai is an OR-gate, then we construct a simple dag GATEi as in Figure 5a. with ui, vi
corresponding sons of u(a), v(a). If ® is a c-e relation with u(a)®v(a), it is easy to see that

OUT1 i®OUT2i and OUT3i®OUT4i if either INliQIN 2i or IN 3iiN 4 i. It will be clear from the
construction of G(a) that if @ is minimal, then these are the only cases in which the output nodes
will be related by (. If ai is an AND-gate, exactly similar reasoning applies for the simple dag of

Figure 5b, which simulates the logic of AND.

The remaining task is to "connect" the gates so that if, for example, the first output of ai goes

to the second input of aj, then IN3j®IN4j whenever OUTliQOUT2i. We use an example
connection between ai and aj to illustrate the construction of a "patch board" simple dag PATCH,
which contains two new nodes up. Vp and IN and OUT nodes from the input-subgraph and gate

subgraphs of G(a). Let Up. Vp be corresponding sons of u(a), v(a), different from the sons used in
the gate and input subgraphs. Now make IN3j and OUTi corresponding sons of up and vp; also

NOV4

10

make IN4j and 0L1l2i corresponding -Ai. of tip and vp (%e igures 5c and 5d). When ti(a)®(a),

two input nodes of GATE. %ill be merged if the right two OutpUL nodes Of GAI- i are.

As in the proof of 'Ibcorem 1. we label the outputs of the final gate with different constant

symbols. All other nodes have labels that depend on their ariy. so that nodes with outdegrec 2. say.

have the same label. It is easy to verify by induction that in the minimal c-c relation S with
u(.)®ia), we have OUI'ln®0UTln and OU'3n@OU'I'4n iff the output of the last gate an is I.

This completes the proof of Theorem 2.1

Congruence closure is a practical problem that is in many ways a dual to unification. In

unification, the equivalence classes of m and n are merged whenever there exist some equivalent r

and s such that m and n are corresponding sons of r and s. In congruence closure. the equivalence

classes of r and s are merged whenever, for all pairs of corresponding sons m. n, we have that m

is equivalent to n. We consider a pure form of congruence closure in which the node labels are

ignored. however, the arcs must still be labeled so that we can see which sons correspond. Efficient

algorithms for congruence closure are contained in IDSTI.

An equivalence relation 0 on the nodes of a labeled graph is a congruence relation when:
if u,v have same outdegrec and for each pair of corresponding sons we have ui~vi, then uQv.

Given any equivalence relation R. there is a unique minimal congruence relation that contains R,

called the congruence closure of R. An equivalence relation R can be represented using undirected

edges in a labeled dag. We can now pose the following language recognition problem:

CONG = I<G.u,vR> nodes u and v of labeled dag G are related by the congruence closure of R}.

By using a construction that resembles that of Theorem 1 "turned upside-down" and that

exhibits an and/or duality between unification and congruence closure we can show that:

Theorem 3: The language CONG is complete for P.
Proof' Again we reduce MCV to CONG. The wires of the circuit diagram correspond to pairs

of nodes, such that, the two nodes are related in 0 (the congruence closure) iff the value on the

wire is 1. Given a monotone circuit a we construct a dag G(a), an equivalence relation R(a) on its

nodes, and two roots of the dag u(a). v(a). We wish to test the two roots for equivalence in 0, the

congruence closure of R(a).

The construction is bottom-up, so that each circuit input corresponds to a pair of leaves and

each OR and AND gate to a subgraph with two pairs of input and two pairs of output nodes each;
the last OR-subgraph has only one pair of output nodes u(a). v(a). The inputs and outputs are

connected in a pattern similar to that of the proof of Theorem 1. The input leaves are represented

. in Figure 6a, note that for inputs that are I the two leaves are in the same equivalence class of

R(a). The OR-su"graph is in Figure 6b, and two pairs of internal nodes form equivalence classes of
R(a). The AND-subgraph is in Figure 6c. It is simple to verify that the gate subgraphs simulate the

awe logic and that u(a)Ov(a) iff the output of the circuit a is 1. 03

,,,.,,

5. P Iaralk.l Algorithm for Tenn Matching

Unification is a practical sequential algorithm for matching since unilw'ation can be done in
linear time. Howcver, unification is not a good parallel approach to matching. We show how

MA'CII(G.u.v) can be computed in log2n parallel time using polynomially many processors. In
addition, we prove that MATCH(G.u.i) is in co-NI.OGSPAC-. If 0 is a simple dag then
MAICH(G.u.M) is actually in I)I.OGSPACF.

When we wish to determine whether s matches t. we will assume w.l.o.g. that no variables

appear in t. In Section 6 we further clarify the relationship between matching and unification. Since
MATCII(G.uv) is the same as UNIFY(Gu.v) when no variables appear in t,.. we know that tu
matches tv iff there is a homogeneous c-c relation - on G with u-v. A refinement of this
characteri/ation of term matching sIggests an efficient parallel algorithm.

Lemma I: Let G be a labeled dag with nodes u and v.,and let the subgraph of G induced by
the descendants of v have no nodes labeled with variables. L.et R be the minimal correspondence

relation on G with uRv. S be the minimal equivalence relation containing R, and T be the minimal
correspondence relation containing S. Then tu matches tv iff T is homogeneous.

Proof: If tu matches tv then since tu and tv are unifiable, the minimal c-e relation - with u-v
is homogeneous. Since - must contain T. it follows that T is homogeneous.

For the converse, suppose that T is homogeneous. We will define a substitution a such that
6(tu) = tv. Let Gu.Gv be the subgraphs of descendants of uv respectively. We first show that for
every node x in Gu there is a node y in Gv such that xRy. If. on the contrary, there is some x in
Gu without xRy for any y in G. then let w be the last node in some path from u to x with wRz
for some z in Ov. Since w has a son, label(w) is a k-ary function symbol for some k>O. By similar
reasoning, label(z) is a zero-ary function symbol. But then label(w)slabel(z) and hence T is not
homogeneous. It follows from this contradiction that every S-equivalence class contains at least one
node from G.

For each S-equivalence class E, pick some node e from G If w is another Gv node in E, then
since T is homogeneous and no variables appear in G. we can argue that tw = te (here we have
the problem EQUAL). We now define the substitution a. For any variable x in tu, let E be the S-
equivalence class of the node labeled x and define #(x) = te . It is easy to check by induction on
the height of a node w in Gu that if wRz, then a(t w) = t.. Thus a(tu) = tv and tu matches t.D

Given any relation, we can find the minimal correspondence relation R containing it, In log2n
parallel time and n0 (1) processors on a PRAM, using a transitive closure algorithm [Chi. If G is a
labeled dag with n nodes, we define an n2 by n2 boolean correspondence matrix CG . We associate
each (unordered) pair of nodes of G with a row and a column of CG and define the entries of CG:

CG({u, v), {x, y)) -I 1lff x and y are u and v or corresponding sons of u and v.

Lemma : Let G be alabeled dag with nodes u and v, and let R be the min. correspondence
relation s.L uRv. Then xRy iff the ({u, v), {x, y)) entry of Co's transitive closure equals 1. 0

12

Now given relation R. we can flind the miinial equi alence relation S containing R using a

conncL.ted components algorithm. It is well-known that connected components can bc computed in

Iog2n parallel time and n0 (1) processors on a PRAM ICHS].

Since computing correspondence relations twice. connected components once and testing for

hormigeneity are suLTfcient to decide matching. we have that MATCH(G.u.v) can be computed in
kog 2n parallel time and 0 1) processors on a PRAM (or equivalently MATCH E NC).

In fact. we can show somewhat tighter complexity upper bounds, since I)I.OGSPA17 Q
NLOGSPACE Q NC:

Theorem 4: lhc set of <G.u,v> such that MA'ICH(G,u.v) = false is in NI.OGSPACF
Furthermore. if G is a simple dag. then this recognition problem is in I)i.OGSPACE.

Proof: Iet G be a dag with MATCH(G.u.v)=false. Let R.S.T be relations on the nodes or G
as in the statement of Lemma 1. By Lemma 1. there must be nodes x and y of G such that xTy.
but label(x) and label(y) are two different function symbols. We show that there is a log-space

bounded nondeterministic Turing machine M-1. capable of guessing all pairs (x,y) such that xTy.
and checking whether x and y have the same labels. Thus recognizirig the <G,u,v>'s, such that.
MAICH(G,uv) = true is a problem in co-NLOGSPACE (also a subset of the class NC).

To begin with, let MR be a nondeterministic machine that starts with the pair (u,v) on its
worktape. A move of MR consists of replacing a pair (xy) with a pair (xiy i) of corresponding sons
of x and y. Clearly MR is capable of guessing (xy) iff xRy.

We now define a nondeterministic machine M S using MR. The machine MS begins by running
MR some nondeterministic number of steps to guess a pair (x,y). Subsequently, MS repeats the
following 3 steps nondeterministically:

(1) If one pair (x,y, or two pairs (x,y) (w,z) are on the worktape, then it may replace (x,y) by (y,x).
(2) If (xy), (yz) are on the worktape, then it may replace both by the single pair (xz).

(3) If the single pair (xy) is on the worktape, then it may run MR some number of steps to guess
(w,z) and end up with both pairs (w,z), (xy) on the worktape.

With these primitive steps MS may guess (xy) iff xSy.

Finally, we build MT frowm M S.This machine behaves just like MR. but instead of starting with
(uv), starts with any pair (xy) that MS is capable of guessing. This concludes the proof of the first

part of the theorem, which in a way describes the PRAM algorithm sketched above, but from the

point of view of nondeterministic log-space.

If G is a simple dag, then MR can easily be made a deterministic depth-first enumerator of
pairs (xy). This machine MDR always maintains the pair immediately preceeding the current one,
so th.It it can backtrack from leaf nodes. Backtracking from internal nodes is staightforward since
each has indegrec 1.

Using a log-space preprocessor we can treat the subgraph rooted at v as a tree. Recall that this
graph has no variable, so that all we need to do is duplicate leaves labeled wi;h constants. By doing

13

, this we limit the number of times step (2) of MS must be repealed it only two. lius we can
construct a determinitic machine MI)$ that enumerate% all (x.y) such that xSy. Finally. we build a

deterministic MI) T from MI)R and MI) s as before. 0
A corollary of Theorem 4 is that for simple dags deciding whether MATCH(G.u.v)= true is also

in DLOGSPACE, since DI.OGSPACE is closed under complement. From the analysis in [I-V] it

also follows that this problem can be solved in O(log n) parallel time on a PRAM.

6. Conclusions and Open Problems

We have demonstrated that several versions of unification are complete for P. This suggests, by

way of the parallel computation thesis, that unification is inherently sequential. It is unlikely that

significant improvements in the speed of theorem provers, interpreters for logic programs, and the
like will be brought about by the development of parallel unification algorithms. However, for the

special case of term matching, the prospects are much brighter. Term matching can be accomplished

in log n or log2n parallel time, depending on whether the input is in the form of a simple dag.

We might also point out that unification of terms s and t is complete for P even if s and t do

not contain any variables in common (this is different from t having no variables). Also, if s and t
are unifiable this does not imply that s matches t or that t matches s. However, if s matches t then s

and t are unrestricted unifiable. If s matches t and t matches s they are unifiable.

Intuitively, congruence closure appears to be a "dual" of unification. It. too, is complete for P.
As a consequence, various congruence closure problems, such as the decision problem for the first-

order quantifier-free theory of equality [DSTJ are not conducive to extremely fast parallel solutions.

There are remarkable similarities between the sequential algorithms for unification and testing

equivalence of deterministic finite automata. However, the inequivalence of deterministic finite

automate can be detected nondeterministically using only logarithmic space. A machine can see that
two automata A1 and A2 are equivalent by guessing an input string, character by character and

simulating the actions of both machines as it goes. If one ends up in an accept state while the other

rejects, then the two are clearly different. If A, and A2 differ, then some sequence of characters
must surely uncover this. Thus unification is subtly, but fundamentally different from this "almost

identical" problem.

Some interesting open problems remain unresolved, namely; (1) lower bounds for the

complexity of MATCH and EQUAL or can our upper bounds be improved, (2) the number of
processors used in the transitive closure of a correspondence matrix is unrealistically large, and it

would be of some practical significance to decrease it to even n3, and finally (3) what i the

complexity of commutative matching, I.e., if function symbols stand for commutative operations.

, "f,-e ,* ,,',, .y.' ..".,,...V "".- .'... .,..,. .. *....;..-'. "..,..:**. . , %*, ' - ,,.'.... %%.. ..

14

Referemes

[1 Cook. S.A.. "An Overview of Computational Complexity". CACAt 26(6) 1983. pp 400-409.

ICh Chandra. A.K., "Maximal Parallelism in Matrix Multiplication", IBM report. RC 6193. 1976.
[CM] Clocksin. W.F., Mellish. C.S., "Programming in Prolog", Springer-Verlag. 1951.

WlST] Downey, PJ.. Sethi. R., Tarjan, R.E., "Variations on the Common Subexpression Problem",
JACM 27(4), 1980, pp 758-771.

[FWI Fortune, S., Wylie, J., "Parallelism in Random Access Machines", Proc 10th ACM STOC,
pp 114-113.

[GI Goldachlager, LM., The Monotone and Planar Circuit Value Problems are Log Space

Complete for P", SIGACT New 9(2), 1977. pp 25-29.

1021 Goldschlager, L.M., Shaw, R.A., Staples, J., "The Maximum Flow Problem is Log Space
Complete for P". TCS 21, 1982, pp 105-111.
IGKMJ Guttag, JV., Kapur, D., Mumer, D.R., "On Proving Uniform Termination and Restricted

Ternination of Rewriting Systems". Sim J. Computing 12(1), 1983, pp 189-214.

[HCS] Hirschber, D.S., Chandra. A.K., Sarwate, D.V.. "Computing Connected Components on
Parallel computers". CACM 22(8), 1979, pp 461-464.

[J Johnson, D.S.. "The NP-Completeness Column: An Ongoing Guide", J. of Algorithms 4, 1983.
pp 189-203.

[LSI Lewis, H.R. Statman, R, "Uniflability is Complete for co-NLOGSPACE", IPL 15(5), 1982,
pp 220-222.

[M] Milner, R., "A Theory of Type Polymorphism in Programming". JCSS 17. 1978. pp 348-375.
(MM] Martelli, A., Montanai, U., "An Efficient Unification Algorithm". ACM Tran. on
Programming Lanuages and Systems. 4(2) 1982.

[MPS] MacQueen, D., Plotkn, G., Sethi, R., "An Ideal Model for Recursive Polymorphic Types.
Proc 1984 ACM POP., to appear.

[PW Paterson, M.S., Wegman, M.N., "Linear Unification", JCSS 16, 1978, pp 158-167.

(R] Robinson, JA., "A Machine Oriented Logic Based on the Resolution Principle", JACM 12(1),
1965, pp 23-4L

IS) Shapiro. EY., "A Subset of Concurrent Prolog and its Interpreter", ICOT report TR003. Tokyo,
JAPAN, 1983.

S.

•S*** ~ 4* . q . *s*

1e

1 2
1 2

Lx I I21(a)) (12

N

x

I h
2 0

(d)

"u
1 2

1 I

! 1'

~Figure
1: labeled dags

A h

*6,6

AX__ hr

1 .

1. AOB
2 COD, COE, HOF, LOG (propagation)
3. DOE (transitivity)
4. HaI (propagation)
5. FoI (transitivity)
6. LOJ (propagation)
7. JOG (transitivity)

8. M®K (propagation)
9. ununifiable because M and K have distinct labels gj and g2.

2

Figure 2: illustrating naive-unification

%:V 4-' . .' - -

~~~Z~AN AND~&N Z~ a U b !~~* ~~ I~~~ ~ q ~ '-:k,~ '~ # . . ~~ .

* AND

ORo

pO

M..Z"A

*00

()

-------------- - - - -re 3 - a - 0 - - - - - - - - - - - - a ---------

3 b

HT 00 OUT
Ii% 2iT

(b) Gor

Figure 4: Theorem I subgraphs

W- Lmrv ffrn - - S- 1; IT T - 7-7 .

Mi V.

I A2
434

(b) ADsubgraph

a

I' I

CT OUTaTt 141

(c) exaMPle Use Of PATCH (d) putting everything together

Figure 5: Theorem 2 subgraphs

20

0 1

(a) inputs

p

ou 1 2uT ~ OUT3 OJ 4j

INi '"2i IN&i INC

(b) OR subgraph

OUTl OUTni OUT* OUT,

i0q

INti IN2 INi INi

(c) AND subgraph

Figure 6: Theorem 3 subgraphs
(R is denoted by -------

OFFICIAL DISTRIBUTION LIST

1984

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

* Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hooper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

...........

~4 R

1-j

Mtt
6

A 41~

-4 4-

iv.1

4444

- #

4A

